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Atomistic simulation methods have been used to calculate the energetics of substitution 
and segregation of calcium ions near and at the {001 } and { 110}1 surfaces of magnesium 
oxide at thermal equilibrium. Defect clusters and complete planes of segregating ions have 
been considered, thereby including impurity-impurity interaction terms. Calculated 
enthalpies of segregation o f -  0.42 and --0.78 eV, derived from different interatomic 
potentials, are in good agreement with the experimental heat of segregation of -- 0.78 + 
0.22 eV reported recently by Wynblatt and McCune. A simple statistical mechanical 
theory leads to an Arrhenius expression for large crystals and the deviation from this 
behaviour expected in microcrystallites. 

1. Introduction 
Surfaces and interfaces in solids provide lattice 
defects, including impurities, with an environment 
which can differ markedly from that in the 
bulk. This difference is thought to lead to the 
formation of space-charge layers [1-3]  and may 
also be responsible for gradients in impurity 
concentration [4-12] ,  and stoichiometry [13-  
15], in the case of non-stoichiometric materials. 
All three are likely to affect crystal properties 
at thermal equilibrium. In particular, the segre- 
gation of impurity ions, which produces gradients 
in impurity concentration, can have an important 
influence not only on surface properties but on 
features such as bulk diffusion rates, even for 
crystals with the lowest levels of impurity. For 
more concentrated solid solutions of the type 
used to control material properties these effects 
are potentially even more significant. Many 
technological processes such as heterogeneous 
catalysis and corrosion are governed by surface 
structure and composition, most often of multi- 
component systems. A knowledge of equilibrium 
segregation, therefore, would seem to be an 
essential prerequisite for understanding and 
eventual control of these important processes. 

Most studies of segregation have been concerned 

with metal surfaces and alloys [16]. Recently, 
however, experimental investigations have been 
reported for other materials, including the simpler 
oxides [4-12,  17, 18]. Sensitive surface techniques 
such as Auger electron spectroscopy (AES)and 
X-ray photoelectron spectroscopy (XPS) yield 
detailed measurements of surface composition, 
from the temperature dependence of which an 
effective enthalpy of segregation can be deduced 
[17]. However, here as elsewhere in materials 
science experimental difficulties can be severe 
and the interpretation of data prone to possible 
ambiguity. In these circumstances calculations of 
the type previously reported [19-23] might prove 
a useful adjunct to experiment. In a recent theor- 
etical study the bulk and surface doping of 
MgO by several binary oxides has been examined 
using defect lattice methods [24]. There appears 
to be substantial agreement with such data as 
exist, but the neglect of impurity interaction 
effects in these calculations, strictly speaking, 
limits their range of validity to near infinite 
dilution. In view of the potential importance of 
segregation at higher levels of impurity we have 
chosen to study a single system, namely MgO- 
C.aO, in rather greater detail than that given 
previously [24], and here report calculations 
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based on a more complete atomistic approach 
which applies to finite dopant concentrations. 
In addition, we apply a simple statistical mech- 
anical model that can be generalized to systems 
with more than two components. Finally we 
present modifications to our results for very 
small crystallite sizes that might be relevant to 
high surface area materials such as those used in 
catalytic and other applications. 

2. Lattice calculations 
The calculations presented here refer to a dilute 
solution of Ca 2+ in MgO. They are of three types 
and correspond to calcium substitution in a 
variety of bulk and surface configurations. We 
have examined in detail the substitution of single 
ions, {1 10} dimers, {1 10} trimers, planar 
pentamers and complete (infinite) planes of Ca 2§ 
ions in the bulk and at the {(301} and {110} 
surfaces of MgO using atomistic simulation pro- 
cedures described in full elsewhere [25]. As on 
previous occasions [19-23] our approach is 
based on defect lattice methods developed by 
Lidiard and Norgett [26] and Norgett [27, 28] 
for bulk defects and extended to surfaces by 
Stewart and Mackrodt [19], Mackrodt and 
Stewart [20] and  Tasker [21-23].  We note, in 
particular, simulation methods employing two- 
dimensional periodic boundary conditions [21-  
23] used for whole arrays of substituted ions 
which saturate the surface region. From this we 
obtain an energy of substitution appropriate to 
the limit of high surface segregation. Throughout 
we employ an ionic model of MgO in which 
cations and anions have formal charges of + 2 
and - -2  respectively. This has been justified for 
oxides of this type previously on experimental 
grounds [29] and confirmed by ab initio quantum 
mechanical cluster calculations [30]. 

We have used two sets of interatomic potentials, 
both of which incorporate the shell model intro- 
duced by Dick and Overhauser [31] and used 
subsequently by numerous authors. The first set 
of potentials is identical to that used previously 
[24] and is derived from modified electron-gas 
calculations [32]. Numerical details of these are 
given in a recent compilation by Colbourn et al. 
[33]. A particular advantage of this approach 
is that impurity interactions are calculated in 
exactly the same way as those for the host lattice 
so that there is a measure of internal consistency 
about these potentials although they are, of 
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course, approximate. Shell parameters, on the 
Other hand, are obtained empirically by fitting to 
the observed dielectric constants; the potentials 
as a whole, therefore, are best described as semi- 
empirical. The second set of potentials we have 
used is that obtained by Sangster and Stoneham 
[34] by fitting to the observed elastic and phonon 
data in addition to the cohesive energy and lattice 
constant. Unlike the first set, it is entirely empirical. 
However, a notable feature of these potentials is 
that they were derived as a set for a range of 
rocksalt-structured oxides, including MgO and 
CaO, assuming a transferable oxygen-oxygen 
interaction. They are particularly suitable, there- 
fore, in impurity studies. As before, shell para- 
meters are derived by fitting to dielectric data. 
As discussed previously [35] the two sets of 
potentials differ in many respects, principally 
with regard to short-range interactions involving 
0 2- and oxygen polarizability: however, these 
differences allow us to assess the importance of 
potentials in calculations such as these. 

3. The statistical mechanical model 
Previous calculations [36] have applied a mono- 
layer model to minimize the free energy of segre- 
gation: the change in entropy of mixing due to 
segregation is offset by the gain in energy of the 
segregating species. The model we use here is 
basically similar in that we identify only two 
types of site, namely interface and bulk, and 
include the configurational entropy of the system. 
Our expressions are generalized for more than 
two components, and can be evaluated for high 
surface area materials where it cannot be assumed 
that the bulk composition is unperturbed by 
surface segregation. 

We write the free energy G, as 

G = ~  nibglb +~.,n?g~--kTln~ (1) 
i i 

where n b is the number of ions of species i in the 
bulk of the crystal, n~ the corresponding number 
at the surface (or any other interface) k is 
Boltzmann's constant and T is the absolute tem- 
perature, gb and g~ are the individual free energies 
of the ions, so that Equation 1 neglects interaction 
terms other than those explicitly included in the 
calculation of gi, which are concentration 
dependent. ~2, the configurational entropy is 

given by, Nb ! Ns ! 



in which N b and Ns are the number of bulk and 
surface sites respectively in the crystal. As men- 
tioned earlier, we have assumed that only two 
types of site need be considered. 

Minimizing the total free energy, G, with respect 
to n/b and n s, subject to the constraints, 

n~ b = Nb = constant 
i 

n s = Ns = constant (3) 
i 

and 
n b + n s = n i = constant 

we get 

n[/ni = 11[1 + exp(g s - g i  b - X ) / k T ]  (4) 

The constraints (Equation 3) make the number of 
bulk and surface sites independently constant. 
The model does not, therefore, allow for restruc- 
turing of the surface in a way that depends on the 
degree of segregation if that restructuring alters 
the density of surface sites. The Lagrange multiplier, 
X, is given by 

nil[1 + exp(g~ - -g~ -- X)/kT] = N s (5) 
i 

or alternatively 

~, nil[ 1 + exp(g/b _ g S  + X)/kT] = Nb (6) 
i 

For a two-component system, the experimentally 
measured quantity is usually n~/r~, which is 
given by 

n~ nl [1 + exp(g~ --gb 2 - - X ) / k r ]  

n~ - n2 [1 + exp(g~ _ g b  - - X ) / k r ]  (7) 

When N s ~ ni, for  all i, Equation 5 reduces to 

X = - - k T l n  . Ns exp(g s _ g b ) / k  T (8) 

This condition will hold for macroscopic crystals 
with any measurable level of impurity. Substituting 
for X in Equation 7 and simplifying we obtain 
the usual simple Arrhenius expression, 

n]/nS2 = f exp (-- H / k T )  (9) 

in which f is the impurity concentration or doping 
level, 

f = nl/n2 (10) 

and H is given by 

H = (g[ _gb)_(g.~ _gb )  (11) 

If the changes in vibrational entropy on segregation 
can be neglected, we can associate the free energies, 
gi, with the substitutional energies derived from 
our static lattice calculation. Thus, 

= 

and (12) 
g b - - g b  2 = Z ~  b 

where zkE s and AE b are the substitutional energies 
of ion i for ion 2 in the surface and bulk, respec- 
tively. Hence, 

H = AE s - A E  b (13) 

H, therefore, is equal to the enthalpy of segre- 
gation, which is obtained from experiment via 
the Arrhenius relationship, Equation 9. 

In the derivation given above, we have shown 
how substitutional energies obtained from static 
lattice calculations give an enthalpy of segre- 
gation, which for macroscopic crystals, leads to 
an Arrhenius temperature dependence for the 
surface concentrations. For small crystallites 
(N s ~n i )  an explicit evaluation of Equations 
4 and 5 gives the dependence on crystal size. 
Calculations described in the following section 
show that the substitutional energies (per ion), 
AE s and AE b, are dependent on the degree of 
segregation through defect interactions. This we 
accommodate in our theory by choosing values 
appropriate to the high degree of segregation 
predicted, thereby including hnpurity inter- 
action terms. 

4. Results 
Magnesium oxide and calcium oxide both have 
the rocksalt ( fcc )  structure and the solution 
of one in the other occurs by cation substitution. 
For the reaction, 

r 2+ + MgO CaO + Mg~+g ,~aMg 

the heat of solution, AHsom, is given by 

&//soln = zXEb -- WL(CaO) + WL(MgO) 
(14) 

where WL(CaO) and WL(MgO) are the appro- 
priate cohesive energies and AE b the energy to 
substitute Ca 2+ in MgO, including lattice relaxation. 
The calculated values for these quantities derived 
from the two potentials we use are recorded in 
Table I. The theoretical estimates are similar and 
the calculated cohesive energies agree well with 
experiment. 
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TABLE I Calculated bulk and surface properties of MgO obtained using two different interionic potentials. Com- 
parison with experiment is shown. The calculated enthalpy of solution neglects volume changes on substitution and is 
obtained from Equation 14 

Non-empirical potentials Empirical potentials Experiment 

Cohesive energy CaO(eV) -- 36.4 
Cohesive energy MgO(eV) --40.8 
Substitutions energy Ca~g(eV) 5.82 
Enthalpy of solution (eV) 1.42 
Surface energy {001} (Jm -~) 1.1 

Surface energy {110} (Jm -2) 2.9 

-36 .0  - 36.0 [211 
-41 .0  -40 .4  [211 

6.52 
1.52 
1.2 1.04, 1.2, 

1.15 [22] 
2.9 

The predominant (lower energy) surface of  
f c c  materials has a {001} orientation, and this 
we have examined in detail for direct comparison 
with experiment. For completeness, however, we 
also present results for the { 1 10} surface. Surface 
energies derived from the two potentials are also 
given in Table I. Again, there is close agreement 
between the two models, and with experiment. 
Surfaces o f  this type generally show a slight 
rumpling, with outward movement of  anions and 
inward cation displacements. Both experiment 
[37 -39 ]  and theory [19,20]  show this to 
be very small in MgO and CaO and the pre- 
sent calculations support this view. Thus we 
believe our non-defective surfaces, which form 
the basis of  any segregation calculation, to be 
a fairly accurate model for real planar surfaces in 
MgO. 

In Tables II and III we have summarized our 
calculated substitution energies for Ca 2§ near a 
{001} surface of  MgO, based on.electron-gas 
and empirical potentials respectively. We have 
considered clusters of  one to five ions building up 
to a saturated plane in the surface layer, one layer 
below the surface and in the bulk. The results 
shown are for a single ion, a trimer of  ions oriented 
along the {1 10} direction, a square array of  five 
calcium ions and a complete plane. An initial 
aggregation of  ions in the {1 10} direction pro- 
duces a small reduction in the substitution energy 

TAB L E I I Energies (eV) per substituted calcium 
calculated using non-empirical potentials 

per ion by virtue of  elastic relaxation of  the type 
previously discussed [24], but as the aggregates 
grow we observe a small increase in energy due 
to the mutual repulsion of  the larger ions. In the 
bulk, the energy per ion for a complete plane is 

0.2 eV higher than for an isolated substitute 
due to these repulsions. In the surface, the 
additional energy for aggregation is somewhat 
greater. We note, in particular, that the energy 
for complete planes of  Ca 2+ ions varies very 
little with distance from the surface until the 
surface layer itself. This provides additional 
justification for our thermodynamic model of  
segregation outlined in Section 3. Our results 

based on empirical potentials confirm those 
found previously [24] in that both predict substi- 
tution energies for single ions at the surface which 
are substantially lower than for the bulk, thereby 
indicating a strong tendency for segregation. 
This is the usual result for large ions substituting 
for smaller host ions and is due to the relief of  
elastic strain [24]. However, despite the increase 
in substitution energy with aggregation, a satu- 
rated plane still has a lower energy at the surface 
than in the bulk. We conclude from this that at 
absolute zero the equilibrium segregation of  Ca 2+ 
in MgO would lead to a saturated layer and the 
remaining solute dispersed as isolated point 
defects in the bulk. As mentioned before, we find 
some evidence that {1 10} dimers and trimers may 

ion for clusters on {001} planes near an MgO surface 

Single subsitution 
1 X Ca 2+ 

(110) Dimer (110) Trimer Planar Complete 
2 X Ca 2+ 3 X Ca > 5 X Ca 2+ plane of 

Ca 2+ 
X Ca 2+ 

Plane 1 (surface layer) 3.54 
Plane 2 4.61 
Plane 3 
Bulk 4.62 

3.57 3.56 3.63 4.20 
4.59 4.54 4.61 4.74 
- - - 4.72 
4.60 4.62 4.71 4.72 
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T A B L E  I I I  Energies (eV) per substituted calcium ion for clusters on {001} planes near an MgO 
surface calculated using empirical potentials 

Single substitution (110) Dimer (110) Trimer Planar Complete 
1 X Ca 2+ 2 X Ca 2+ 3 X Ca 2+ 5 X Ca :+ plane 

X Ca ~+ 

Plane 1 (surface plane) 4.82 
Plane 2 6.44 
Plane 3 
Bulk 6.52 

4.88 4.88 4.88 5.74 
- 6.13 6.35 6.66 
- - - 6.64 
- 6.57 6.64 6.65 

be stable in the bulk,  but  the binding energies 
are thought to be small. 

From our calculated substi tution energies we 
deduce enthalpies of  segregation, given by 
Equation 13, in the limit of  high segregation. 
They are given by:  (a) electron-gas potentials 

H = (4.20 --  4.62) eV = - 0.42 eV 

and (b) empirical potentials 

H = (5.74 --  6.52) eV = --  0.78 eV 

At very high temperatures,  when there is li t t le 
segregation, the interaction between C a ~  ions 
is less and the enthalpies of  segreagation decrease 
to - 1.08 and --  1.70 eV respectively for the two 
potentials.  Taking the high segregation enthalpies 
and a concentrat ion of  calcium in magnesia of  
220 ppm, the Arrhenius expression of  Equation 9 
gives the temperature dependence of  Ca 2§ surface 
concentration shown in Fig. 1. These are exactly 
the experimental  conditions under which Wynblatt  
and McCune have examined this system recently 

[17]. Using Auger electron spectroscopy to deter- 
mine surface concentrations they deduce a heat  of  
segregation of  - -  0.78 + 0.22 eV. Our results are 
in good agreement with this value, particularly 
so for those derived from empirical potentials.  
Our Arrhenius plot has the same gradient as 
experiment [17], but  the concentrations at each 
temperature are approximately  six times greater. 
Theory and experiment can be brought into 
better  agreement if  one assumes that  the AES 
technique samples, and hence averages, over the 
first few atomic layers. A further discrepancy 
is that  our calculations have also neglected the 
effects of  dispersing the segregated species over 
a few layers at finite temperatures.  

In Table IV we summarize our results for the 
{110} surface. Once again we find a strong 
tendency for the larger Ca ~§ ion to segregate at 

the surface. In this case, however, the lattice 
environment,  as reflected in the substitution 
energies, does not  reach that  of  the bulk till 
approximately  the sixth layer into the crystal. 

104 - -  
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0 1 "  

0 0 1 1  

0 001 
0 

r(K) 
25002000 1500 1000 800 000 

J I I I 
5 10 15 20 

1/Tx104 

Figure i The calculated ratio of 
calcium to magnesium ions in 
the {001} surface layer of 
MgO containing 220ppm of 
calcium as a function of tem- 
perature. The enthalpy of segre- 
gation is taken as -- 0.78 eV. 
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T A B L E V I Energies (eV) of substitution per Ca 2+ ion near a { 110} MgO surface 

Calculated potentials Empirical potentials 

Single substitution Complete plane Single substitution 
1 x Ca 2+ ,~ X Ca 2+ 1 X Ca 2+ 

Complete plane 
o~ X Ca 2+ 

Plane 1 (surface plane) 3.19 3.86 3.97 4.86 
Plane 2 5.14 5.06 5.29 6.78 
Plane 3 4.40 4.40 - 6.08 
Plane 4 - 4.65 - 6.36 
Bulk 4.62 - 6.52 - 

Furthermore, the substitution energy in the 
plane just below the surface is somewhat higher 
than in the bulk; and this is quite a different 
situation to that at the {001} surface. Our simple 
monolayer model for the temperature dependence, 
therefore, is unlikely to be adequate here. 

Quantitative measurements have also been 
made for the MgO-NiO system by Cimino et al. 
[18]. Previous calculations [19, 20] based on 
empirical potentials similar to those used here 
have given substitution energies for isolated Ni 2+ 
ions in the bulk and at the {001 } surface. From 
these values we estimate an enthalpy of  segre- 
gation o f  approximately + 0.01 eV which agrees 
well with the observation [18] that there is no 
appreciable deviation from bulk composition 
for this system except for a possible slight 
depletion o f  Ni 2§ ions at the surface. 

5. Small crystallites 
Our simple model outlined in Section 3 is based 
on macroscopic crystals. However, many import- 
ant surface phenomena involve very high surface 

area materials and hence small crystallite size. 
In these circumstances, the Arrhenius expression 
of  Equation 9 is no longer valid since N s ~ ni, 
as opposed to N s ~ n i which is the case for large 
particles. However, the degree of  segregation can 
still be calculated from Equations 4 and 5 without 
further approximation. The result depends only 
on the enthalpy of  segregation, H, as defined by 
Equation 11 for a two-component system, and 
can be seen most easily if we write 

y = exp(g~2 _ g b - - X ) / k T  (15) 

Equation 4 then takes the form, 

n_~[_ 1 
na 1 + e x p ( H / k T ) y  (16) 

while y is determined from Equation 5, which we 
now write as 

nl /12 
+ - g  s (17) 

1 + e x p ( H / k T ) y  1 + y 

Fig. 2 shows the fraction o f  surface sites, n~/Ns, 
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Figure 2 Solid curve: the fraction of {001} surface sites in MgO occupied by calcium ions given for two temperatures 
and a total calcium concentration of 220 ppm. Broken curve: the fraction of the impurity calcium ions that are in the 
surface layer for the same temperature and concentration. 
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occupied by calcium ions as a function of 
crystallite size at 500 and 1000K. In calculating 
n~/N s we have assumed cubic crystallites, a 
calcium concentration of 220 ppm and a value of 
--0.78 eV for H. Also shown in Fig. 2 are the 
large (~) crystal values for n~/Ns: they are 1.0 and 
0.65 at 500 and 1000K, respectively. Even at 
the lower temperature the surface is not saturated 
until the crystal size is approximately 10/.tin, 
while at 1000K particles of this size have not 
reached the large crystal equilibrium value of 
0.65. The significance of these results is that 
many catalytic processes, for example, utilize 
crystallite sizes substantially less than 10gm so 
that impurity segregation in these systems will 
differ appreciably from that in coarser-grained 
materials. 

Also shown in Fig. 2 (as broken lines) is the 
fraction of calcium ions in the surface, n f / n l ,  

at the same two temperatures: the remainder, 
n l - - n ~ ,  is distributed in the bulk. At 500K 
when surface segregation, as opposed to saturation, 
is almost complete, the effects of crystal size can 
be seen quite clearly. Small crystals, as distinct 
from macroscopic material, possess relatively large 
numbers of surface sites and this leads to less 
saturation of the surface simply because there 
are insufficient impurity ions to fill these sites. 
there will be a tendency for all impurity ions to 
fill surface sites up to saturation and then to 
occupy the bulk. The net effect of this is that the 
bulk concentration will not reach the infinite or 
large crystal value until particle sizes exceed about 
100#m. We suggest, therefore, that this rather 
simple geometric factor, namely surface to bulk 
ratio, will have a substantial influence on the 
relative behaviour of small and large crystals. 
At high temperature the situation is less extreme 
with impurity ions filling both bulk and surface 
sites at almost all crystal sizes. However, crystals 
need to be in excess of ~ 100/Jm before the 
bulk concentration approaches the total impurity 
level. 

6. Conclusions 
This paper has attempted to give a theoretical 
description of the segregation of calcium ions 
at the surface of magnesium oxide. From the 
results presented we conclude that simple (ideal 
solution) statistical mechanical considerations 
can be combined with detailed atomistic lattice 
simulation to give a quantitative prediction of 

surface segregation. Furthermore, the treatment 
of  defect clusters and complete planes of impurity 
ions in our atomistic calculations enables the 
present results to be extended beyond the ideal 
solution approximation, since impurity-impurity 
interaction terms have been included explicitly. 
For two-component systems we demonstrate that 
Arrhenius behaviour applies only to macroscopic 
crystals, while microcrystallites show substantially 
modified characteristics. In particular, we suggest 
that the increased surface to bulk site ratio for 
small crystals will lead to less saturation and a 
greatly reduced bulk concentration of impurity 
by comparison with macroscopic material. In the 
specific case of calcium in magnesium oxide we 
find a strong tendency towards segregation at the 
surface and calculate enthalpies of - 0 . 4 2  and 
--0.78 eV for the two potentials we have used. 
The latter, in particular, which derives from recent 
empirical potentials [35], is in good agreement 
with recent Auger electron spectroscopy results 
[17]. The two site model we have used together 
with the assumption of a simple planar surface is 
clearly a gross approximation; however, the results 
presented here suggest that it might provide a 
useful starting point for the theoretical investi- 
gation of surface segregation. 
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